Поверхность Понтрягина
Вы находитесь на сайте "Архив статей из ЭЕЭ и статей на еврейские темы из Википедии"
(Новая страница: «{{О_статье| ТИП СТАТЬИ = 4 | АВТОР1 = | АВТОР2 = | АВТОР3 = | СУПЕРВАЙЗЕР = | ПРОЕКТ = | ПОДТЕМА = | К…»)
Следующая правка →
Версия 22:06, 21 июня 2011
Текст унаследован из Википедии | |
Пове́рхности Понтря́гина — определённая последовательность двумерных (в смысле размерности Лебега) «размерно неполноценных» континуумов Πm. То есть таких, что их гомологическая размерность по данному модулю m = 2,3,.. равна 1.
Содержание |
Построение
…
Свойства
- Поверхности Понтрягина вкладываются в четырёхмерное евклидово пространство
- при
История
Понтрягин построил такие поверхности Π2, Π3, что их топологическое произведение есть континуум размерности 3. Этим была опровергнута гипотеза, что при топологическом перемножении двух (метрических) компактов их размерности складываются. Им же эта гипотеза доказана для гомологической размерности по простому модулю и вообще по всякой группе коэффициентов, являющейся полем. Позже Болтянским был построен двумерный континуум B (поверхность Болтянского), топологический квадрат которого трёхмерен.
Литература
- Александров П. С, Введение в гомологическую теорию размерности и общую комбинаторную топологию, М., 1975.
- Болтянский В., «Успехи матем. наук», 1951, т. 6, в. 3, с. 99—128;
- Понтрягин Л. С, «С.г. Acad. sci.», 1930, t. 190, p. 1105—07;
Шаблон:Math-stubУведомление: Предварительной основой данной статьи была аналогичная статья в http://ru.wikipedia.org, на условиях CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0, которая в дальнейшем изменялась, исправлялась и редактировалась.