Функциональная отделимость

Вы находитесь на сайте "Архив статей из ЭЕЭ и статей на еврейские темы из Википедии"

(Различия между версиями)
Перейти к: навигация, поиск
(Новая страница: «Два подмножества <math>A</math> и <math>B</math> в данном [[топологическое пространство|топологическом…»)
(Add template остатье)
Строка 1: Строка 1:
-
Два подмножества <math>A</math> и <math>B</math> в данном [[топологическое пространство|топологическом пространстве]] <math>X</math> называются '''функционально отделимыми''' в <math>X</math>, если существует такая определенная во всём пространстве вещественная ограниченная непрерывная функция <math>f</math>, которая принимает во всех точках множества <math>A</math> одно значение <math>a</math>, a
+
{{Остатье| ТИП СТАТЬИ  = 1
 +
| АВТОР1  =
 +
| АВТОР2 =
 +
| АВТОР3 =
 +
| СУПЕРВАЙЗЕР =
 +
| ПРОЕКТ =
 +
| ПОДТЕМА =
 +
| КАЧЕСТВО  =
 +
| УРОВЕНЬ  =
 +
| ДАТА СОЗДАНИЯ  =
 +
| ВИКИПЕДИЯ =
 +
| НЕОДНОЗНАЧНОСТЬ  =
 +
}}Два подмножества <math>A</math> и <math>B</math> в данном [[топологическое пространство|топологическом пространстве]] <math>X</math> называются '''функционально отделимыми''' в <math>X</math>, если существует такая определенная во всём пространстве вещественная ограниченная непрерывная функция <math>f</math>, которая принимает во всех точках множества <math>A</math> одно значение <math>a</math>, a
во всех точках множества <math>B</math> ― некоторое отличное от <math>a</math>
во всех точках множества <math>B</math> ― некоторое отличное от <math>a</math>
значение <math>b</math>.  
значение <math>b</math>.  

Версия 10:01, 18 апреля 2010

Тип статьи: Регулярная статья

Два подмножества A и B в данном топологическом пространстве X называются функционально отделимыми в X, если существует такая определенная во всём пространстве вещественная ограниченная непрерывная функция f, которая принимает во всех точках множества A одно значение a, a во всех точках множества B ― некоторое отличное от a значение b. При этом всегда можно предположить, что a=0,b=1,0\leqslant f(x)\leqslant 1 во всех точках x\in X.

Пространство, в котором всякая точка функционально отделима от всякого не содержащего её замкнутого множества, называется вполне регулярным.

Свойства

  • Два функционально отделимых множества всегда отделимы и окрестностями. Обратное утверждение верно не всегда, однако имеет место:
    • Лемма Урысона. В нормальном пространстве всякие два дизъюнктные замкнутые множества функционально отделимы.

См. также

  • Принцип разделимости

Уведомление: Предварительной основой данной статьи была аналогичная статья в http://ru.wikipedia.org, на условиях CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0, которая в дальнейшем изменялась, исправлялась и редактировалась.

Личные инструменты
 

Шаблон:Ежевика:Рубрики

Навигация